Weighted Matchings in General Graphs
نویسنده
چکیده
In the previous section we saw how we could use LP duality theory to develop an algorithm for the weighted matching problem in bipartite graphs. In this section, we’ll see how to extend that algorithm to handle general graphs. As in the unweighted case, blossom-shrinking plays a central role. However, in weighted graphs we will handle blossoms a bit differently. In particular, we will maintain blossoms across multiple augmenting path searches. Let’s start by reviewing the matching ILP and its LP relaxation.
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملOn the Total Weight of Weighted Matchings of Segment Graphs
We study the total weight of weighted matchings in segment graphs, which is related to a question concerning generalized Chebyshev polynomials introduced by Vauchassade de Chaumont and Viennot and, more recently, investigated by Kim and Zeng. We prove that weighted matchings with sufficiently large node-weight cannot have equal total weight.
متن کاملCoverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کامل0 Trees and Matchings Richard
In this article, Temperley’s bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spann...
متن کاملThe Polynomially Bounded Perfect Matching Problem Is in NC 2
The perfect matching problem is known to be in ¶, in randomized NC, and it is hard for NL. Whether the perfect matching problem is in NC is one of the most prominent open questions in complexity theory regarding parallel computations. Grigoriev and Karpinski [GK87] studied the perfect matching problem for bipartite graphs with polynomially bounded permanent. They showed that for such bipartite ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013